Original Papers

★: Collaboration in this research area.

A01-1 Watanabe Group

  • Mizushima, R., Inoue, K., Fujiwara, H., Iwane, A. H., Watanabe, T. M., & Kimura, A. (2020). Multiplexed 129Xe HyperCEST MRI Detection of Genetically Reconstituted Bacterial Protein Nanoparticles in Human Cancer Cells. Contrast Media and Molecular Imaging2020https://doi.org/10.1155/2020/5425934
  • Kakizuka, T., Takai, A., Yoshizawa, K., Okada, Y., & Watanabe, T. M. (2020). An improved fluorescent protein-based expression reporter system that utilizes bioluminescence resonance energy transfer and peptide-Assisted complementation. Chemical Communications56(25), 3625–3628. https://doi.org/10.1039/c9cc08664a
  • Matsumoto, K., Mitani, T. T., Horiguchi, S. A., Kaneshiro, J., Murakami, T. C., Mano, T., Fujishima, H., Konno, A., Watanabe, T. M., Hirai, H., & Ueda, H. R. (2019). Advanced CUBIC tissue clearing for whole-organ cell profiling. Nature Protocols14(12), 3506–3537. https://doi.org/10.1038/s41596-019-0240-9
  • ★ Kaneshiro, J., Okada, Y., Shima, T., Tsujii, M., Imada, K., Ichimura, T., & Watanabe, T. M. (2019). Second harmonic generation polarization microscopy as a tool for protein structure analysis. Biophysics and Physicobiology16(0), 147–157. https://doi.org/10.2142/biophysico.16.0_147
  • Ali, A., Abouleila, Y., Shimizu, Y., Hiyama, E., Watanabe, T. M., Yanagida, T., & Germond, A. (2019). Single-Cell Screening of Tamoxifen Abundance and Effect Using Mass Spectrometry and Raman-Spectroscopy. Analytical Chemistry91(4), 2710–2718. https://doi.org/10.1021/acs.analchem.8b04393
  • Nishiyama, M., Namita, T., Kondo, K., Yamakawa, M., & Shiina, T. (2019). Ring-array photoacoustic tomography for imaging human finger vasculature. Journal of Biomedical Optics24(09), 1. https://doi.org/10.1117/1.jbo.24.9.096005
  • ★ Germond, A., Ichimura, T., Horinouchi, T., Fujita, H., Furusawa, C., & Watanabe, T. M. (2018). Raman spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli. Communications Biology1(1). https://doi.org/10.1038/s42003-018-0093-8
  • Okamoto, K., Germond, A., Fujita, H., Furusawa, C., Okada, Y., & Watanabe, T. M. (2018). Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation. Scientific Reports8(1). https://doi.org/10.1038/s41598-018-30461-2
  • Germond, A., Ichimura, T., Chiu, L. da, Fujita, K., Watanabe, T. M., & Fujita, H. (2018). Cell type discrimination based on image features of molecular component distribution. Scientific Reports8(1). https://doi.org/10.1038/s41598-018-30276-1
  • Nakahata, K., Karakawa, K., Ogi, K., Mizukami, K., Ohira, K., Maruyama, M., Wada, S., Namita, T., & Shiina, T. (2019). Three-dimensional SAFT imaging for anisotropic materials using photoacoustic microscopy. Ultrasonics98, 82–87. https://doi.org/10.1016/j.ultras.2019.05.006
  • Shima, T., Morikawa, M., Kaneshiro, J., Kambara, T., Kamimura, S., Yagi, T., Iwamoto, H., Uemura, S., Shigematsu, H., Shirouzu, M., Ichimura, T., Watanabe, T. M., Nitta, R., Okada, Y., & Hirokawa, N. (2018). Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. The Journal of Cell Biology217(12), 4164–4183. https://doi.org/10.1083/jcb.201711178
  • Shiina, T., Toi, M., & Yagi, T. (2018). Development and clinical translation of photoacoustic mammography. Biomedical Engineering Letters8(2), 157–165. https://doi.org/10.1007/s13534-018-0070-7
  • Panina, Y., Germond, A., Masui, S., & Watanabe, T. M. (2018). Validation of Common Housekeeping Genes as Reference for qPCR Gene Expression Analysis During iPS Reprogramming Process. Scientific Reports8(1), 8716. https://doi.org/10.1038/s41598-018-26707-8

A01-2 Nagai Group

  • ★*Ichimura T, Kakizuka T, Horikawa K, Seiriki K, Kasai A, Hashimoto H, Fujita K, Watanabe TM, *Nagai T., Trans-scale scope to find rare cellular activity in sub-million cells. bioRxiv, (2020)
    doi: https://doi.org/10.1101/2020.06.29.179044
  • ★Kakizuka T, Hara Y, Ohta Y, Mukai A, Ichiraku A, Arai Y, Ichimura T, Nagai T, *Horikawa K., Cellular logics bringing the symmetry breaking in spiral nucleation revealed by trans-scale imaging. bioRxiv (2020)
  • Takenouchi O, *Yoshimura H, Ozawa T.”Quantitative analysis of membrane receptor trafficking manipulated by optogenetic tools.” Methods in Molecular Biology, In press
  • Li Q, *Yoshimura H, Ozawa T. “A split-luciferase-based cell fusion assay for evaluating the myogenesis-promoting effects of chemical compounds.” Methods in Molecular Biology, In press
  • Watabe, M., Yoshimura, H., Arjunan, S. N. V., Kaizu, K., & Takahashi, K. (2020). Multiary complex formations in GPCR signaling activationshttp://arxiv.org/abs/2004.07440
  • Endo, M., Iwawaki, T., Yoshimura, H., & Ozawa, T. (2019). Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light. ACS Chemical Biology14(10), 2206–2214. https://doi.org/10.1021/acschembio.9b00460
  • Shinoda, H., Lu, K., Nakashima, R., Wazawa, T., Noguchi, K., Matsuda, T., & Nagai, T. (2019). Acid-Tolerant Reversibly Switchable Green Fluorescent Protein for Super-resolution Imaging under Acidic Conditions. Cell Chemical Biology26(10), 1469-1479.e6. https://doi.org/10.1016/j.chembiol.2019.07.012
  • Nezu, A., Morita, T., Nagai, T., & Tanimura, A. (2019). Simultaneous monitoring of Ca2+ responses and salivary secretion in live animals reveals a threshold intracellular Ca2+ concentration for salivation. Experimental Physiology104(1), 61–69. https://doi.org/10.1113/EP086868
  • ★Oketani R, Suda H, Uegaki K, Kubo T, Matsuda T, Yamanaka M, Arai Y, Smith N, Nagai T, *Fujita K. “Visible-wavelength two-photon excitation microscopy with multifocus scanning for volumetric live-cell imaging.”J. Biomed. Opt. 25: 014502 (2019).
  • Li, Q., Yoshimura, H., Komiya, M., Tajiri, K., Uesugi, M., Hata, Y., & Ozawa, T. (2018). A robust split-luciferase-based cell fusion screening for discovering myogenesis-promoting molecules. The Analyst143(14), 3472–3480. https://doi.org/10.1039/c8an00285a
  • Takenouchi, O., Yoshimura, H., & Ozawa, T. (2018). Unique Roles of β-Arrestin in GPCR Trafficking Revealed by Photoinducible Dimerizers. Scientific Reports8(1), 677. https://doi.org/10.1038/s41598-017-19130-y
  • Yoshimura, H. (2018). Live Cell Imaging of Endogenous RNAs Using Pumilio Homology Domain Mutants: Principles and Applications. Biochemistry57(2), 200–208. https://doi.org/10.1021/acs.biochem.7b00983
  • Suzuki, K., Onishi, T., Nakada, C., Takei, S., Daniels, M. J., Nakano, M., Matsuda, T., & Nagai, T. (2018). Uninterrupted monitoring of drug effects in human-induced pluripotent stem cell-derived cardiomyocytes with bioluminescence Ca2+ microscopy. BMC Research Notes11(1), 313. https://doi.org/10.1186/s13104-018-3421-7
  • Maeshima, K., Matsuda, T., Shindo, Y., Imamura, H., Tamura, S., Imai, R., Kawakami, S., Nagashima, R., Soga, T., Noji, H., Oka, K., & Nagai, T. (2018). A Transient Rise in Free Mg2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation. Current Biology : CB28(3), 444-451.e6. https://doi.org/10.1016/j.cub.2017.12.035
  • Arai, Y., Takauchi, H., Ogami, Y., Fujiwara, S., Nakano, M., Matsuda, T., & Nagai, T. (2018). Spontaneously Blinking Fluorescent Protein for Simple Single Laser Super-Resolution Live Cell Imaging. ACS Chemical Biology13(8), 1938–1943. https://doi.org/10.1021/acschembio.8b00200
  • Hara-Kuge, S., Nishihara, T., Matsuda, T., Kitazono, T., Teramoto, T., Nagai, T., & Ishihara, T. (2018). An improved inverse-type Ca2+ indicator can detect putative neuronal inhibition in Caenorhabditis elegans by increasing signal intensity upon Ca2+ decrease. PloS One13(4), e0194707. https://doi.org/10.1371/journal.pone.0194707
  • Shinoda, H., Ma, Y., Nakashima, R., Sakurai, K., Matsuda, T., & Nagai, T. (2018). Acid-Tolerant Monomeric GFP from Olindias formosa. Cell Chemical Biology25(3), 330-338.e7. https://doi.org/10.1016/j.chembiol.2017.12.005
  • Riani, Y. D., Matsuda, T., Takemoto, K., & Nagai, T. (2018). Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation. BMC Biology16(1), 50. https://doi.org/10.1186/s12915-018-0514-7
  • Komatsu, N., Terai, K., Imanishi, A., Kamioka, Y., Sumiyama, K., Jin, T., Okada, Y., Nagai, T., & Matsuda, M. (2018). A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. Scientific Reports8(1), 8984. https://doi.org/10.1038/s41598-018-27174-x
  • Yoshimura, H., & Ozawa, T. (2018). Real-Time Fluorescence Imaging of Single-Molecule Endogenous Noncoding RNA in Living Cells. Methods in Molecular Biology (Clifton, N.J.)1649, 337–347. https://doi.org/10.1007/978-1-4939-7213-5_22
  • Hossain, M. N., Suzuki, K., Iwano, M., Matsuda, T., & Nagai, T. (2018). Bioluminescent Low-Affinity Ca2+ Indicator for ER with Multicolor Calcium Imaging in Single Living Cells. ACS Chemical Biology13(7), 1862–1871. https://doi.org/10.1021/acschembio.7b01014
  • Shinoda, H., Shannon, M., & Nagai, T. (2018). Fluorescent Proteins for Investigating Biological Events in Acidic Environments. International Journal of Molecular Sciences19(6). https://doi.org/10.3390/ijms19061548
  • Ohta, Y., Furuta, T., Nagai, T., & Horikawa, K. (2018). Red fluorescent cAMP indicator with increased affinity and expanded dynamic range. Scientific Reports8(1), 1866. https://doi.org/10.1038/s41598-018-20251-1
  • Kushida, Y., Arai, Y., Shimono, K., & Nagai, T. (2018). Biomimetic Chemical Sensing by Fluorescence Signals Using a Virus-like Particle-Based Platform. ACS Sensors3(1), 87–92. https://doi.org/10.1021/acssensors.7b00537
  • Pavlou, A., Yoshimura, H., Aono, S., & Pinakoulaki, E. (2018). Protein Dynamics of the Sensor Protein HemAT as Probed by Time-Resolved Step-Scan FTIR Spectroscopy. Biophysical Journal114(3), 584–591. https://doi.org/10.1016/j.bpj.2017.12.012
  • Sato, R., Kawashima, R., Trinh, M. D. L., Nakano, M., Nagai, T., & Masuda, S. (2019). Significance of PGR5-dependent cyclic electron flow for optimizing the rate of ATP synthesis and consumption in Arabidopsis chloroplasts. Photosynthesis Research139(1–3), 359–365. https://doi.org/10.1007/s11120-018-0533-9
  • Farhana, I., Hossain, M. N., Suzuki, K., Matsuda, T., & Nagai, T. (2019). Genetically encoded fluorescence/bioluminescence bimodal indicators for Ca2+ imaging. ACS Sensors4(7), 1825–1834. https://doi.org/10.1021/acssensors.9b00531

A01-3 Shiroguchi Group

  • Aso, H., Nagaoka, S., Kawakami, E., Ito, J., Islam, S., Tan, B. J. Y., Nakaoka, S., Ashizaki, K., Shiroguchi, K., Suzuki, Y., Satou, Y., Koyanagi, Y., & Sato, K. (2020). Multiomics Investigation Revealing the Characteristics of HIV-1-Infected Cells In Vivo. Cell Reports32(2), 107887.
  • Kimura, S., Nakamura, Y., Kobayashi, N., Shiroguchi, K., Kawakami, E., Mutoh, M., Takahashi-Iwanaga, H., Yamada, T., Hisamoto, M., Nakamura, M., Udagawa, N., Sato, S., Kaisho, T., Iwanaga, T., & Hase, K. (2020). Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nature Communications, 11(1).
  • Yazaki, J., Kawashima, Y., Ogawa, T., Kobayashi, A., Okoshi, M., Watanabe, T., Yoshida, S., Kii, I., Egami, S., Amagai, M., Hosoya, T., Shiroguchi, K., & Ohara, O. (2020). HaloTag-based conjugation of proteins to barcoding-oligonucleotides. Nucleic Acids Research, 48(2), e8.
  • Miyamoto, C., Kojo, S., Yamashita, M., Moro, K., Lacaud, G., Shiroguchi, K., Taniuchi, I., & Ebihara, T. (2019). Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nature Communications, 10(1).

A02-1 Onami Group

  • Kyoda K, Ho KHL, Tohsato Y, Itoga H, *Onami S: BD5: and open HDF5-based data format to represent quantitative biological dynamics data. bioRxiv DOI: 10.1101/2020.04.26.062976.
  • ★Shinkai, S., Nakagawa, M., Sugawara, T., Togashi, Y., Ochiai, H., Nakato, R., Taniguchi, Y., & Onami, S. (2020). PHi-C: deciphering Hi-C data into polymer dynamics. NAR Genomics and Bioinformatics2(2). https://doi.org/10.1093/NARGAB/LQAA020
  • Shinkai, S., Sugawara, T., Miura, H., Hiratani, I., & Onami, S. (2020). Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization. Biophysical Journalhttps://doi.org/10.1016/j.bpj.2020.02.020
  • Moore, J. (2019). On Bringing Bioimaging Data?into the Open(-World)https://doi.org/10.6084/M9.FIGSHARE.11352074.V1
  • Imakubo, M., Takayama, J., & Onami, S. (2018). Improvement and Evaluation of a Mathematical Model for Fertilization Calcium Waves in Caenorhabditis Elegans. IPSJ Transactions on Bioinformatics11, 24–30. https://doi.org/10.2197/ipsjtbio.11.24
  • Onoue, Y., Kyoda, K., Kioka, M., Baba, K., Onami, S., & Koyamada, K. (2018). Development of an Integrated Visualization System for Phenotypic Character Networks. 2018 IEEE Pacific Visualization Symposium (PacificVis), 21–25. https://doi.org/10.1109/PacificVis.2018.00012

A02-2 Komatsuzaki Group

  • ★Basak US, Sattari S, Horikawa K, *Komatsuzaki T. Inferring Domain of Interactions among Particles from Ensemble of Trajectories. Phys. Rev. E , 2020, In Press
  • Komatsuzaki, T., Pressé, S., & Senet, P. (2019). Deciphering Molecular Complexity in Dynamics and Kinetics – From the Single Molecule to the Single Cell Level. In Journal of Physical Chemistry B (Vol. 123, Issue 30, pp. 6387–6388). American Chemical Society. https://doi.org/10.1021/acs.jpcb.9b05382
  • ★Pélissier, A., Nakamura, A., & Tabata, K. (2019). Feature selection as Monte-Carlo search in growing single rooted directed acyclic graph by best leaf identification. SIAM International Conference on Data Mining, SDM 2019, 450–458. https://doi.org/10.1137/1.9781611975673.51
  • ★Tabata, K., Nakamura, A., Honda, J., & Komatsuzaki, T. (2020). A bad arm existence checking problem: How to utilize asymmetric problem structure? Machine Learning109(2), 327–372. https://doi.org/10.1007/s10994-019-05854-7
  • ★Helal, K. M., Taylor, J. N., Cahyadi, H., Okajima, A., Tabata, K., Itoh, Y., Tanaka, H., Fujita, K., Harada, Y., & Komatsuzaki, T. (2019). Raman spectroscopic histology using machine learning for nonalcoholic fatty liver disease. FEBS Letters593(18), 2535–2544. https://doi.org/10.1002/1873-3468.13520
  • ★Taylor, J. N., Mochizuki, K., Hashimoto, K., Kumamoto, Y., Harada, Y., Fujita, K., & Komatsuzaki, T. (2019). High-Resolution Raman Microscopic Detection of Follicular Thyroid Cancer Cells with Unsupervised Machine Learning. Journal of Physical Chemistry B123(20), 4358–4372. https://doi.org/10.1021/acs.jpcb.9b01159
  • Takeyama, S., Ono, S., & Kumazawa, I. (2019). Mixed Noise Removal for Hyperspectral Images Using Hybrid Spatio-Spectral Total Variation. Proceedings – International Conference on Image Processing, ICIP2019September, 3128–3132. https://doi.org/10.1109/ICIP.2019.8803239
  • Ono, S. (2019). Efficient Constrained Signal Reconstruction by Randomized Epigraphical Projection. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings2019May, 4993–4997. https://doi.org/10.1109/ICASSP.2019.8682191
  • Takeyama, S., Ona, S., & Kumazawa, I. (2018). Robust and effective hyperspectral pansharpening using spatio-spectral total variation. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings2018April, 1603–1607. https://doi.org/10.1109/ICASSP.2018.8462464

A03-1 Bannai Group

  • Bannai, H., Niwa, F., Sakuragi, S., & Mikoshiba, K. (2020). Inhibitory synaptic transmission tuned by Ca 2+ and glutamate through the control of GABA A R lateral diffusion dynamics. Development, Growth & Differentiation, dgd.12667. https://doi.org/10.1111/dgd.12667
  • Hiroshima, M., Yasui, M., & Ueda, M. (2020). Large-scale single-molecule imaging aided by artificial intelligence. Microscopy (Oxford, England)69(2), 69–78. https://doi.org/10.1093/jmicro/dfz116
  • Bannai, H., Hirose, M., Niwa, F., & Mikoshiba, K. (2019). Dissection of Local Ca2+ Signals in Cultured Cells by Membrane-targeted Ca2+ Indicators. Journal of Visualized Experiments : JoVE145https://doi.org/10.3791/59246
  • Ano, Y., Ohya, R., Takaichi, Y., Washinuma, T., Uchida, K., Takashima, A., & Nakayama, H. (2020). β-Lactolin, a Whey-Derived Lacto-Tetrapeptide, Prevents Alzheimer’s Disease Pathologies and Cognitive Decline. Journal of Alzheimer’s Disease73(4), 1331–1342. https://doi.org/10.3233/JAD-190997
  • Nakamura, M., Shiozawa, S., Tsuboi, D., Amano, M., Watanabe, H., Maeda, S., Kimura, T., Yoshimatsu, S., Kisa, F., Karch, C. M., Miyasaka, T., Takashima, A., Sahara, N., Hisanaga, S, Ikeuchi, T., Kaibuchi, K., & Okano, H. (2019). Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports13(4), 684–699. https://doi.org/10.1016/j.stemcr.2019.08.011
  • Maeda, S., & Takashima, A. (2019). Tau Oligomers. In Advances in Experimental Medicine and Biology (Vol. 1184, pp. 373–380). Springer. https://doi.org/10.1007/978-981-32-9358-8_27
  • Takashima, A., Wolozin, B., & Buee, L. (2019). Tau Biology (A. Takashima, B. Wolozin, & L. Buee (Eds.); Vol. 1184). Springer Singapore. https://doi.org/10.1007/978-981-32-9358-8
  • Kubo, A., Misonou, H., Matsuyama, M., Nomori, A., Wada-Kakuda, S., Takashima, A., Kawata, M., Murayama, S., Ihara, Y., & Miyasaka, T. (2019). Distribution of endogenous normal tau in the mouse brain. Journal of Comparative Neurology527(5), 985–998. https://doi.org/10.1002/cne.24577
  • Soeda, Y., Saito, M., Maeda, S., Ishida, K., Nakamura, A., Kojima, S., & Takashima, A. (2019). Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: A plausible key to understanding failure of a clinical trial for Alzheimer’s disease. Journal of Alzheimer’s Disease68(4), 1677–1686. https://doi.org/10.3233/JAD-181001
  • Silva, J. M., Rodrigues, S., Sampaio-Marques, B., Gomes, P., Neves-Carvalho, A., Dioli, C., Soares-Cunha, C., Mazuik, B. F., Takashima, A., Ludovico, P., Wolozin, B., Sousa, N., & Sotiropoulos, I. (2019). Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death and Differentiation26(8), 1411–1427. https://doi.org/10.1038/s41418-018-0217-1
  • Ano, Y., Yoshino, Y., Kutsukake, T., Ohya, R., Fukuda, T., Uchida, K., Takashima, A., & Nakayama, H. (2019). Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline. Aging11(10), 2949–2967. https://doi.org/10.18632/aging.101909
  • Yanagawa, M., Hiroshima, M., Togashi, Y., Abe, M., Yamashita, T., Shichida, Y., Murata, M., Ueda, M., & Sako, Y. (2018). Single-molecule diffusion-based estimation of ligand effects on G protein-coupled receptors. Science Signaling11(548). https://doi.org/10.1126/scisignal.aao1917
  • Bannai, H. (2018). Molecular membrane dynamics: Insights into synaptic function and neuropathological disease. Neuroscience Research129, 47–56. https://doi.org/10.1016/j.neures.2017.07.007
  • Yasui, M., Hiroshima, M., Kozuka, J., Sako, Y., & Ueda, M. (2018). Automated single-molecule imaging in living cells. Nature Communications9(1), 3061. https://doi.org/10.1038/s41467-018-05524-7
  • Hiroshima, M., Pack, C.-G., Kaizu, K., Takahashi, K., Ueda, M., & Sako, Y. (2018). Transient Acceleration of Epidermal Growth Factor Receptor Dynamics Produces Higher-Order Signaling Clusters. Journal of Molecular Biology430(9), 1386–1401. https://doi.org/10.1016/j.jmb.2018.02.018

A03-2 Horikawa Group

  • ★Kakizuka T, Hara Y. Ohta Y, Mukai A, Arai Y, Ichimura TNagai T , *Horikawa K ”Onset dynamics in the self-organization of spiral waves.” bioRxiv (2020).
  • Iida, H., Furukawa, Y., Teramoto, M., Suzuki, H., Takemoto, T., Uchikawa, M., & Kondoh, H. (2020). Sox2 gene regulation via the D1 enhancer in embryonic neural tube and neural crest by the combined action of SOX2 and ZIC2. Genes to Cells25(4), 242–256. https://doi.org/10.1111/gtc.12753
  • Teramoto, M., Sugawara, R., Minegishi, K., Uchikawa, M., Takemoto, T., Kuroiwa, A., Ishii, Y., & Kondoh, H. (2020). The absence of SOX2 in the anterior foregut alters the esophagus into trachea and bronchi in both epithelial and mesenchymal components. Biology Open9(2). https://doi.org/10.1242/bio.048728
  • ★Sugiura, D., Maruhashi, T., Okazaki, I. M., Shimizu, K., Maeda, T. K., Takemoto, T., & Okazaki, T. (2019). Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science364(6440), 558–566. https://doi.org/10.1126/science.aav7062
  • Yamamoto, S., Uchida, Y., Ohtani, T., Nozaki, E., Yin, C., Gotoh, Y., Yakushiji-Kaminatsui, N., Higashiyama, T., Suzuki, T., Takemoto, T., Shiraishi, Y., & Kuroiwa, A. (2019). Hoxa13 regulates expression of common Hox target genes involved in cartilage development to coordinate the expansion of the autopodal anlage. Development Growth and Differentiation61(3), 228–251. https://doi.org/10.1111/dgd.12601
  • Tanihara, F., Hirata, M., Nguyen, N. T., Le, Q. A., Hirano, T., Takemoto, T., Nakai, M., Fuchimoto, D.-I., & Otoi, T. (2019). Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation. Animal Science Journal = Nihon Chikusan Gakkaiho90(1), 55–61. https://doi.org/10.1111/asj.13129
  • Morishima, M., Horikawa, K., & Funaki, M. (2018). Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. PloS One13(8), e0201891. https://doi.org/10.1371/journal.pone.0201891
  • Harada, A., Maehara, K., Ono, Y., Taguchi, H., Yoshioka, K., Kitajima, Y., Xie, Y., Sato, Y., Iwasaki, T., Nogami, J., Okada, S., Komatsu, T., Semba, Y., Takemoto, T., Kimura, H., Kurumizaka, H., & Ohkawa, Y. (2018). Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration. Nature Communications9(1), 1400. https://doi.org/10.1038/s41467-018-03845-1
  • Tanihara, F., Hirata, M., Nguyen, N. T., Le, Q. A., Hirano, T., Takemoto, T., Nakai, M., Fuchimoto, D.-I., & Otoi, T. (2018). Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation. PloS One13(10), e0206360. https://doi.org/10.1371/journal.pone.0206360
  • Nishio, K., Tanihara, F., Nguyen, T.-V., Kunihara, T., Nii, M., Hirata, M., Takemoto, T., & Otoi, T. (2018). Effects of voltage strength during electroporation on the development and quality of in vitro-produced porcine embryos. Reproduction in Domestic Animals = Zuchthygiene53(2), 313–318. https://doi.org/10.1111/rda.13106

A03-3 Hashimoto Group

  • ★Tanuma, M., Kasai, A., Bando, K., Kotoku, N., Harada, K., Minoshima, M., Higashino, K., Kimishima, A., Arai, M., Ago, Y., Seiriki, K., Kikuchi, K., Kawata, S., Fujita, K., & Hashimoto, H. (2020). Direct visualization of an antidepressant analog using surface-enhanced Raman scattering in the brain. JCI Insight5(6). https://doi.org/10.1172/jci.insight.133348
  • Matsumura, K., Seiriki, K., Okada, S., Nagase, M., Ayabe, S., Yamada, I., Furuse, T., Shibuya, H., Yasuda, Y., Yamamori, H., Fujimoto, M., Nagayasu, K., Yamamoto, K., Kitagawa, K., Miura, H., Gotoda-Nishimura, N., Igarashi, H., Hayashida, M., Baba, M., … Nakazawa, T. (2020). Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nature Communications11(1). https://doi.org/10.1038/s41467-020-14697-z
  • ★Yokoyama, R., Higuchi, M., Tanabe, W., Tsukada, S., Naito, M., Yamaguchi, T., Chen, L., Kasai, A., Seiriki, K., Nakazawa, T., Nakagawa, S., Hashimoto, K., Hashimoto, H., & Ago, Y. (2020). (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression. Pharmacology, Biochemistry, and Behavior191, 172876. https://doi.org/10.1016/j.pbb.2020.172876
  • Baba, M., Yokoyama, K., Seiriki, K., Naka, Y., Matsumura, K., Kondo, M., Yamamoto, K., Hayashida, M., Kasai, A., Ago, Y., Nagayasu, K., Hayata-Takano, A., Takahashi, A., Yamaguchi, S., Mori, D., Ozaki, N., Yamamoto, T., Takuma, K., Hashimoto, R., … Nakazawa, T. (2019). Psychiatric-disorder-related behavioral phenotypes and cortical hyperactivity in a mouse model of 3q29 deletion syndrome. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology44(12), 2125–2135. https://doi.org/10.1038/s41386-019-0441-5
  • Nakazawa, T., Hashimoto, R., Takuma, K., & Hashimoto, H. (2019). Modeling of psychiatric disorders using induced pluripotent stem cell-related technologies. In Journal of Pharmacological Sciences (Vol. 140, Issue 4, pp. 321–324). Japanese Pharmacological Society. https://doi.org/10.1016/j.jphs.2019.06.002
  • Fulop, D. B., Humli, V., Szepesy, J., Ott, V., Reglodi, D., Gaszner, B., Nemeth, A., Szirmai, A., Tamas, L., Hashimoto, H., Zelles, T., & Tamas, A. (2019). Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Scientific Reports9(1). https://doi.org/10.1038/s41598-019-50775-z
  • ★Ago, Y., Tanabe, W., Higuchi, M., Tsukada, S., Tanaka, T., Yamaguchi, T., Igarashi, H., Yokoyama, R., Seiriki, K., Kasai, A., Nakazawa, T., Nakagawa, S., Hashimoto, K., & Hashimoto, H. (2019). (R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism. The International Journal of Neuropsychopharmacology22(10), 665–674. https://doi.org/10.1093/ijnp/pyz041
  • ★Seiriki, K., Kasai, A., Nakazawa, T., Niu, M., Naka, Y., Tanuma, M., Igarashi, H., Yamaura, K., Hayata-Takano, A., Ago, Y., & Hashimoto, H. (2019). Whole-brain block-face serial microscopy tomography at subcellular resolution using FAST. Nature Protocols14(5), 1509–1529. https://doi.org/10.1038/s41596-019-0148-4
  • Nishitani, N., Nagayasu, K., Asaoka, N., Yamashiro, M., Andoh, C., Nagai, Y., Kinoshita, H., Kawai, H., Shibui, N., Liu, B., Hewinson, J., Shirakawa, H., Nakagawa, T.Hashimoto, H., Kasparov, S., & Kaneko, S. (2019). Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology44(4), 721–732. https://doi.org/10.1038/s41386-018-0254-y
  • Fulop, B. D., Sandor, B., Szentleleky, E., Karanyicz, E., Reglodi, D., Gaszner, B., Zakany, R., Hashimoto, H., Juhasz, T., & Tamas, A. (2019). Altered Notch Signaling in Developing Molar Teeth of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-Deficient Mice. Journal of Molecular Neuroscience68(3), 377–388. https://doi.org/10.1007/s12031-018-1146-7
  • Li, J., Hashimoto, H., & Meltzer, H. Y. (2019). Association of Serotonin2c Receptor Polymorphisms With Antipsychotic Drug Response in Schizophrenia. Frontiers in Psychiatry10, 58. https://doi.org/10.3389/fpsyt.2019.00058
  • Ivic, I., Balasko, M., Fulop, B. D., Hashimoto, H., Toth, G., Tamas, A., Juhasz, T., Koller, A., Reglodi, D., & Solymár, M. (2019). VPAC1 receptors play a dominant role in PACAP-induced vasorelaxation in female mice. PloS One14(1), e0211433. https://doi.org/10.1371/journal.pone.0211433
  • Matsumura, K., Baba, M., Nagayasu, K., Yamamoto, K., Kondo, M., Kitagawa, K., Takemoto, T., Seiriki, K., Kasai, A., Ago, Y., Hayata-Takano, A., Shintani, N., Kuriu, T., Iguchi, T., Sato, M., Takuma, K., Hashimoto, R., Hashimoto, H., & Nakazawa, T. (2019). Autism-associated protein kinase D2 regulates embryonic cortical neuron development. Biochemical and Biophysical Research Communications519(3), 626–632. https://doi.org/10.1016/j.bbrc.2019.09.048

A03-4 Okazaki Group

  • Takeuchi, A., Ozawa, M., Cui, G., Ikuta, K., & Katakai, T. Lymph node stromal cells: diverse meshwork structures weave functionally subdivided niches. Curr. Top. Microbiol. Immunol. In press.
  • Shimizu, K., Sugiura, D., Okazaki, I. M., Maruhashi, T., Takegami, Y., Cheng, C., Ozaki, S., and Okazaki, T. (2020). PD-1 Imposes Qualitative Control of Cellular Transcriptomes in Response to T Cell Activation. Mol. Cell 77, 937-950.e6. https://doi.org/10.1016/j.molcel.2019.12.012
  • Okamura, H., Okazaki, I. M., Shimizu, K., Maruhashi, T., Sugiura, D., Mizuno, R., & Okazaki, T. (2019). PD-1 aborts the activation trajectory of autoreactive CD8+ T cells to prohibit their acquisition of effector functions. Journal of Autoimmunity105https://doi.org/10.1016/j.jaut.2019.06.007
  • ★Sugiura, D., Maruhashi, T., Okazaki, I. M., Shimizu, K., Maeda, T. K., Takemoto, T., & Okazaki, T. (2019). Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science364(6440), 558–566. https://doi.org/10.1126/science.aav7062
  • Nagai, M., Noguchi, R., Takahashi, D., Morikawa, T., Koshida, K., Komiyama, S., Ishihara, N., Yamada, T., Kawamura, Y. I., Muroi, K., Hattori, K., Kobayashi, N., Fujimura, Y., Hirota, M., Matsumoto, R., Aoki, R., Tamura-Nakano, M., Sugiyama, M., Katakai, T., … Hase, K. (2019). Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell178(5), 1072-1087.e14. https://doi.org/10.1016/j.cell.2019.07.047
  • Mizuno, R., Sugiura, D., Shimizu, K., Maruhashi, T., Watada, M., Okazaki, I. M., & Okazaki, T. (2019). PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Frontiers in Immunology10(MAR). https://doi.org/10.3389/fimmu.2019.00630
  • Hayashi, Y., Jia, W., Kidoya, H., Muramatsu, F., Tsukada, Y., & Takakura, N. (2019). Galectin-3 Inhibits Cancer Metastasis by Negatively Regulating Integrin β3 Expression. American Journal of Pathology189(4), 900–910. https://doi.org/10.1016/j.ajpath.2018.12.005
  • Komabayashi-Suzuki, M., Yamanishi, E., Watanabe, C., Okamura, M., Tabata, H., Iwai, R., Ajioka, I., Matsushita, J., Kidoya, H., Takakura, N., Okamoto, T., Kinoshita, K., Ichihashi, M., Nagata, K., Ema, M., & Mizutani, K. (2019). Spatiotemporally Dependent Vascularization Is Differently Utilized among Neural Progenitor Subtypes during Neocortical Development. Cell Reports29(5), 1113-1129.e5. https://doi.org/10.1016/j.celrep.2019.09.048
  • Maeda, T. K., Sugiura, D., Okazaki, I. M., Maruhashi, T., & Okazaki, T. (2019). Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. The Journal of Biological Chemistry294(15), 6017–6026. https://doi.org/10.1074/jbc.RA119.007455
  • Kunimura, K., Sakata, D., Tun, X., Uruno, T., Ushijima, M., Katakai, T., Shiraishi, A., Aihara, R., Kamikaseda, Y., Matsubara, K., Kanegane, H., Sawa, S., Eberl, G., Ohga, S., Yoshikai, Y., & Fukui, Y. (2019). S100A4 Protein Is Essential for the Development of Mature Microfold Cells in Peyer’s Patches. Cell Reports29(9), 2823-2834.e7. https://doi.org/10.1016/j.celrep.2019.10.091
  • Kivelä, R., Hemanthakumar, K. A., Vaparanta, K., Robciuc, M., Izumiya, Y., Kidoya, H., Takakura, N., Peng, X., Sawyer, D. B., Elenius, K., Walsh, K., & Alitalo, K. (2019). Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling. Circulation139(22), 2570–2584. https://doi.org/10.1161/CIRCULATIONAHA.118.036099
  • Kidoya, H., Muramatsu, F., Shimamura, T., Jia, W., Satoh, T., Hayashi, Y., Naito, H., Kunisaki, Y., Arai, F., Seki, M., Suzuki, Y., Osawa, T., Akira, S., & Takakura, N. (2019). Regnase-1-mediated post-transcriptional regulation is essential for hematopoietic stem and progenitor cell homeostasis. Nature Communications10(1). https://doi.org/10.1038/s41467-019-09028-w
  • Okazaki, T., & Okazaki, I. M. (2019). Stimulatory and inhibitory co-signals in autoimmunity. In Advances in Experimental Medicine and Biology (Vol. 1189, pp. 213–232). Springer. https://doi.org/10.1007/978-981-32-9717-3_8
  • Kitazawa, Y., Ueta, H., Sawanobori, Y., Katakai, T., Yoneyama, H., Ueha, S., Matsushima, K., Tokuda, N., & Matsuno, K. (2019). Novel targeting to XCR1+ dendritic cells using allogeneic T cells for polytopical antibody responses in the lymph nodes. Frontiers in Immunology10(MAY). https://doi.org/10.3389/fimmu.2019.01195
  • Naito, H., Iba, T., Wakabayashi, T., Tai-Nagara, I., Suehiro, J., Jia, W., Eino, D., Sakimoto, S., Muramatsu, F., Kidoya, H., Sakurai, H., Satoh, T., Akira, S., Kubota, Y., & Takakura, N. (2019). TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Developmental Cell48(2), 151-166.e7. https://doi.org/10.1016/j.devcel.2018.12.002
  • Jia, W., Hsieh, H.-Y., Kidoya, H., & Takakura, N. (2019). Embryonic expression of GINS members in the development of the mammalian nervous system. Neurochemistry International129, 104465. https://doi.org/10.1016/j.neuint.2019.104465
  • Maeda, N., Maruhashi, T., Sugiura, D., Shimizu, K., Okazaki, I. M., & Okazaki, T. (2019). Glucocorticoids potentiate the inhibitory capacity of programmed cell death 1 by up-regulating its expression on T cells. Journal of Biological Chemistry294(52), 19896–19906. https://doi.org/10.1074/jbc.RA119.010379
  • Mizuno, R., Maruhashi, T., Sugiura, D., Shimizu, K., Watada, M., Okazaki, I. M., & Okazaki, T. (2019). PD-1 efficiently inhibits T cell activation even in the presence of co-stimulation through CD27 and GITR. Biochemical and Biophysical Research Communications511(3), 491–497. https://doi.org/10.1016/j.bbrc.2019.02.004
  • Maruhashi, T., Okazaki, I. M., Sugiura, D., Takahashi, S., Maeda, T. K., Shimizu, K., & Okazaki, T. (2018). LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nature Immunology19(12), 1415–1426. https://doi.org/10.1038/s41590-018-0217-9
  • Bogdanova, D., Takeuchi, A., Ozawa, M., Kanda, Y., Rahman, M. A., Ludewig, B., Kinashi, T., & Katakai, T. (2018). Essential Role of Canonical NF-κB Activity in the Development of Stromal Cell Subsets in Secondary Lymphoid Organs. Journal of Immunology (Baltimore, Md. : 1950)201(12), 3580–3586. https://doi.org/10.4049/jimmunol.1800539
  • Takeuchi, A., Ozawa, M., Kanda, Y., Kozai, M., Ohigashi, I., Kurosawa, Y., Rahman, M. A., Kawamura, T., Shichida, Y., Umemoto, E., Miyasaka, M., Ludewig, B., Takahama, Y., Nagasawa, T., & Katakai, T. (2018). A Distinct Subset of Fibroblastic Stromal Cells Constitutes the Cortex-Medulla Boundary Subcompartment of the Lymph Node. Frontiers in Immunology9, 2196. https://doi.org/10.3389/fimmu.2018.02196
  • Katakai, T. (2018). Live Imaging of Interstitial T Cell Migration Using Lymph Node Slices. Methods in Molecular Biology (Clifton, N.J.)1763, 29–42. https://doi.org/10.1007/978-1-4939-7762-8_4
  • Kanda, Y., Takeuchi, A., Ozawa, M., Kurosawa, Y., Kawamura, T., Bogdanova, D., Iioka, H., Kondo, E., Kitazawa, Y., Ueta, H., Matsuno, K., Kinashi, T., & Katakai, T. (2018). Visualizing the Rapid and Dynamic Elimination of Allogeneic T Cells in Secondary Lymphoid Organs. Journal of Immunology (Baltimore, Md. : 1950)201(3), 1062–1072. https://doi.org/10.4049/jimmunol.1700219
  • Eino, D., Tsukada, Y., Naito, H., Kanemura, Y., Iba, T., Wakabayashi, T., Muramatsu, F., Kidoya, H., Arita, H., Kagawa, N., Fujimoto, Y., Takara, K., Kishima, H., & Takakura, N. (2018). LPA4-mediated vascular network formation increases the efficacy of anti–PD-1 therapy against brain tumors. Cancer Research78(23), 6607–6620. https://doi.org/10.1158/0008-5472.CAN-18-0498


A01 HANAOKA Kenjiro

  • Ikeno, T., Hanaoka, K., Iwaki, S., Myochin, T., Murayama, Y., Ohde, H., Komatsu, T., Ueno, T., Nagano, T., & Urano, Y. (2019). Design and Synthesis of an Activatable Photoacoustic Probe for Hypochlorous Acid. Analytical Chemistry91(14), 9086–9092. https://doi.org/10.1021/acs.analchem.9b01529
  • Koide, Y., Kojima, R., Hanaoka, K., Numasawa, K., Komatsu, T., Nagano, T., Kobayashi, H., & Urano, Y. (2019). Design strategy for germanium-rhodamine based pH-activatable near-infrared fluorescence probes suitable for biological applications. Communications Chemistry2(1), 1–8. https://doi.org/10.1038/s42004-019-0194-4
  • Numasawa, K., Hanaoka, K., Saito, N., Yamaguchi, Y., Ikeno, T., Echizen, H., Yasunaga, M., Komatsu, T., Ueno, T., Miura, M., Nagano, T., & Urano, Y. (2020). A Fluorescent Probe for Rapid, High-Contrast Visualization of Folate-Receptor-Expressing Tumors In Vivo. Angewandte Chemie – International Edition59(15), 6015–6020. https://doi.org/10.1002/anie.201914826
  • Takahashi, S., Hanaoka, K., Okubo, Y., Echizen, H., Ikeno, T., Komatsu, T., Ueno, T., Hirose, K., Iino, M., Nagano, T., & Urano, Y. (2020). Rational Design of a Near-infrared Fluorescence Probe for Ca2+ Based on Phosphorus-substituted Rhodamines Utilizing Photoinduced Electron Transfer. Chemistry – An Asian Journal15(4), 524–530. https://doi.org/10.1002/asia.201901689


  • Nomura, N., Nishihara, R., Nakajima, T., Kim, S. B., Iwasawa, N., Hiruta, Y., Nishiyama, S., Sato, M., Citterio, D., & Suzuki, K. (2019). Biothiol-Activatable Bioluminescent Coelenterazine Derivative for Molecular Imaging in Vitro and in Vivo. Analytical Chemistry91(15), 9546–9553. https://doi.org/10.1021/acs.analchem.9b00694
  • Ikeda, Y., Nomoto, T., Hiruta, Y., Nishiyama, N., & Citterio, D. (2020). Ring-Fused Firefly Luciferins: Expanded Palette of Near-Infrared Emitting Bioluminescent Substrates. Analytical Chemistry92(6), 4235–4243. https://doi.org/10.1021/acs.analchem.9b04562


  • Sato, M., Yamato, M., Mitani, G., Takagaki, T., Hamahashi, K., Nakamura, Y., Ishihara, M., Matoba, R., Kobayashi, H., Okano, T., Mochida, J., & Watanabe, M. (2019). Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis. NPJ Regenerative Medicine4(1), 4. https://doi.org/10.1038/s41536-019-0069-4
  • Okawa, S., Hirasawa, T., Kushibiki, T., Fujita, M., & Ishihara, M. (2020). Photoacoustic tomography reconstructing absorption coefficient and effect of regularization minimizing p-norm. In A. A. Oraevsky & L. V. Wang (Eds.), Photons Plus Ultrasound: Imaging and Sensing 2020 (Vol. 11240, p. 132). SPIE. https://doi.org/10.1117/12.2551478

A02 HARADA Akihito

  • Sato, S., Arimura, Y., Kujirai, T., Harada, A., Maehara, K., Nogami, J., Ohkawa, Y., & Kurumizaka, H. (2019). Biochemical analysis of nucleosome targeting by Tn5 transposase. Open Biology9(8), 190116. https://doi.org/10.1098/rsob.190116
  • Fukuda, S., Kaneshige, A., Kaji, T., Noguchi, Y. T., Takemoto, Y., Zhang, L., Tsujikawa, K., Kokubo, H., Uezumi, A., Maehara, K., Harada, A., Ohkawa, Y., & Fukada, S. I. (2019). Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. ELife8https://doi.org/10.7554/eLife.48284
  • Oka, M., Mura, S., Otani, M., Miyamoto, Y., Nogami, J., Maehara, K., Harada, A., Tachibana, T., Yoneda, Y., & Ohkawa, Y. (2019). Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters causing aberrant HOX expression in leukemia cells. ELife8https://doi.org/10.7554/eLife.46667doi.org/10.7554/eLife.48284

A02 OKA Kotaro

  • Yamanaka, R., Shindo, Y., & Oka, K. (2019). Magnesium is a key player in neuronal maturation and neuropathology. International Journal of Molecular Sciences20(14). https://doi.org/10.3390/ijms20143439
  • ★Murata, O., Shindo, Y., Ikeda, Y., Iwasawa, N., Citterio, D., Oka, K., & Hiruta, Y. (2019). Near-Infrared Fluorescent Probes for Imaging of Intracellular Mg2+ and Application to Multi-Color Imaging of Mg2+, ATP, and Mitochondrial Membrane Potential. Analytical Chemistryhttps://doi.org/10.1021/acs.analchem.9b03872

A03 OHBA Yusuke

  • Maishi, N., Kikuchi, H., Sato, M., Nagao-Kitamoto, H., Annan, D. A., Baba, S., Hojo, T., Yanagiya, M., Ohba, Y., Ishii, G., Masutomi, K., Shinohara, N., Hida, Y., & Hida, K. (2019). Development of immortalized human tumor endothelial cells from renal cancer. International Journal of Molecular Sciences20(18). https://doi.org/10.3390/ijms20184595
  • Kashiwagi, S., Fujioka, Y., Kondo, T., Satoh, A. O., Yoshida, A., Fujioka, M., Sasajima, H., Amano, M., Teshima, T., & Ohba, Y. (2019). Localization of BCR-ABL to stress granules contributes to its oncogenic function. Cell Structure and Function44(2), 195–204. https://doi.org/10.1247/csf.19033
  • Kashiwagi, S., Fujioka, Y., Satoh, A. O., Yoshida, A., Fujioka, M., Nepal, P., Tsuzuki, A., Aoki, O., Paudel, S., Sasajima, H., & Ohba, Y. (2019). Folding latency of fluorescent proteins affects the mitochondrial localization of fusion proteins. Cell Structure and Function44(2), 183–194. https://doi.org/10.1247/csf.19028
  • Kondo, T., Fujioka, M., Fujisawa, S., Sato, K., Tsuda, M., Miyagishima, T., Mori, A., Iwasaki, H., Kakinoki, Y., Yamamoto, S., Haseyama, Y., Ando, S., Shindo, M., Ota, S., Kurosawa, M., Ohba, Y., & Teshima, T. (2019). Clinical efficacy and safety of first-line nilotinib therapy and evaluation of the clinical utility of the FRET-based drug sensitivity test. International Journal of Hematology110(4), 482–489. https://doi.org/10.1007/s12185-019-02696-w
  • Takeuchi, Y., Narumi, R., Akiyama, R., Vitiello, E., Shirai, T., Tanimura, N., Kuromiya, K., Ishikawa, S., Kajita, M., Tada, M., Haraoka, Y., Akieda, Y., Ishitani, T., Fujioka, Y., Ohba, Y., Yamada, S., Hosokawa, Y., Toyama, Y., Matsui, T., & Fujita, Y. (2020). Calcium Wave Promotes Cell Extrusion. Current Biology30(4), 670-681.e6. https://doi.org/10.1016/j.cub.2019.11.089

A03 UEHARA Ryota

  • Yoshizawa K, Yaguchi K,  Uehara R Uncoupling of DNA replication and centrosome duplication cycles is a primary cause of haploid instability in mammalian somatic cells, BioRχiv. https://doi.org/10.1101/2020.05.30.124826
  • Mafy, N. N., Matsuo, K., Hiruma, S., Uehara, R., & Tamaoki, N. (2020). Photoswitchable CENP-E Inhibitor Enabling the Dynamic Control of Chromosome Movement and Mitotic Progression. Journal of the American Chemical Society142(4), 1763–1767. https://doi.org/10.1021/jacs.9b12782

A03 KANO Masanobu

  • Kano, M., & Watanabe, T. (2019). Developmental synapse remodeling in the cerebellum and visual thalamus (version 1; peer review: 2 approved]). In F1000Research (Vol. 8). F1000 Research Ltd. https://doi.org/10.12688/f1000research.18903.1

A03 ARII Jun

  • Arii, J., Takeshima, K., Maruzuru, Y., Koyanagi, N., Kato, A., & Kawaguchi, Y. (2019). Roles of the Interhexamer Contact Site for Hexagonal Lattice Formation of the Herpes Simplex Virus 1 Nuclear Egress Complex in Viral Primary Envelopment and Replication. Journal of Virology93(14). https://doi.org/10.1128/jvi.00498-19
  • Takeshima, K., Arii, J., Maruzuru, Y., Koyanagi, N., Kato, A., & Kawaguchi, Y. (2019). Identification of the Capsid Binding Site in the Herpes Simplex Virus 1 Nuclear Egress Complex and Its Role in Viral Primary Envelopment and Replication. Journal of Virology93(21). https://doi.org/10.1128/jvi.01290-19

A03 NAKAMURA Naotoshi

  • Okada, D., Nakamura, N., Wada, T., Iwasaki, A., & Yamada, R. (2019). Extension of Sinkhorn Method: Optimal Movement Estimation of Agents Moving at Constant Velocity. Transactions of the Japanese Society for Artificial Intelligence34(5), D-J13_1-7. https://doi.org/10.1527/tjsai.D-J13
  • Nakamura, N., Okada, D., Setoh, K., Kawaguchi, T., Higasa, K., Tabara, Y., Matsuda, F., & Yamada, R. (2019). LAVENDER: latent axes discovery from multiple cytometry samples with non-parametric divergence estimation and multidimensional scaling reconstruction. BioRxiv, 673434. https://doi.org/10.1101/673434

A03 ONO Masahiro

  • Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-cell hyperactivation and paralysis in severe COVID-19 infection revealed by single-cell analysis. bioRxiv (2020) https://doi.org/10.1101/2020.05.26.115923
  • Mengrelis, K., Lau, C. I., Rowell, J., Solanki, A., Norris, S., Ross, S., Ono, M., Outram, S., & Crompton, T. (2019). Sonic Hedgehog Is a Determinant of γδ T-Cell Differentiation in the Thymus. Frontiers in Immunology10, 1629. https://doi.org/10.3389/fimmu.2019.01629
  • Papaioannou, E., Yánez, D. C., Ross, S., Lau, C. I., Solanki, A., Chawda, M. M., Virasami, A., Ranz, I., Ono, M., O’Shaughnessy, R. F. L., & Crompton, T. (2019). Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. Journal of Clinical Investigation129(8), 3153–3170. https://doi.org/10.1172/JCI125170
  • Ono, M. (2020). Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. In Immunology (Vol. 160, Issue 1, pp. 24–37). Blackwell Publishing Ltd. https://doi.org/10.1111/imm.13178
  • Śledzińska, A., Vila de Mucha, M., Bergerhoff, K., Hotblack, A., Demane, D. F., Ghorani, E., Akarca, A. U., Marzolini, M. A. V., Solomon, I., Vargas, F. A., Pule, M., Ono, M., Seddon, B., Kassiotis, G., Ariyan, C. E., Korn, T., Marafioti, T., Lord, G. M., Stauss, H., … Quezada, S. A. (2020). Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4+ T Cells. Immunity52(1), 151-166.e6. https://doi.org/10.1016/j.immuni.2019.12.007

A03 OHTA Etsuro

  • Kubo, M., Nagashima, R., Kurihara, M., Kawakami, F., Maekawa, T., Eshima, K., Ohta, E., Kato, H., & Obata, F. (2020). Leucine-Rich Repeat Kinase 2 Controls Inflammatory Cytokines Production through NF-κB Phosphorylation and Antigen Presentation in Bone Marrow-Derived Dendritic Cells. International Journal of Molecular Sciences21(5), 1890. https://doi.org/10.3390/ijms21051890

A03 CHIKUMA Shunsuke

  • Kondo, T., Imura, Y., Ando, M., Chikuma, S., & Yoshimura, A. (2019). In Vitro Conversion of Activated T Cells into Stem Cell Memory-Like T Cells. In Methods in Molecular Biology (Vol. 2048, pp. 41–51). Humana Press Inc. https://doi.org/10.1007/978-1-4939-9728-2_4
  • Goto, M., Chamoto, K., Higuchi, K., Yamashita, S., Noda, K., Iino, T., Miura, M., Yamasaki, T., Ogawa, O., Sonobe, M., Date, H., Hamanishi, J., Mandai, M., Tanaka, Y., Chikuma, S., Hatae, R., Muto, M., Minamiguchi, S., Minato, N., & Honjo, T. (2019). Analytical performance of a new automated chemiluminescent magnetic immunoassays for soluble PD-1, PD-L1, and CTLA-4 in human plasma. Scientific Reports9(1). https://doi.org/10.1038/s41598-019-46548-3
  • Kondo, T., Ando, M., Nagai, N., Tomisato, W., Srirat, T., Liu, B., Mise-Omata, S., Ikeda, M., Chikuma, S., Nishimasu, H., Nureki, O., Ohmura, M., Hayakawa, N., Hishiki, T., Uchibori, R., Ozawa, K., & Yoshimura, A. (2020). The NOTCH–FOXM1 axis plays a key role in mitochondrial biogenesis in the induction of human stem cell memory–like CAR-T cells. Cancer Research80(3), 471–483. https://doi.org/10.1158/0008-5472.CAN-19-1196
  • Nakatsukasa, H., Oda, M., Yin, J., Chikuma, S., Ito, M., Koga-Iizuka, M., Someya, K., Kitagawa, Y., Ohkura, N., Sakaguchi, S., et al. (2019). Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression. Int. Immunol. 31, 335–347. https://doi.org/10.1093/intimm/dxz008

A03 KON Shunsuke

  • Hata, M., Kinoshita, H., Hayakawa, Y., Konishi, M., Tsuboi, M., Oya, Y., Kurokawa, K., Hayata, Y., Nakagawa, H., Tateishi, K., Fujiwara, H., Hirata, Y., Worthley, D. L., Muranishi, Y., Furukawa, T., Kon, S., Tomita, H., Wang, T. C., & Koike, K. (2020). GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate But Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology158(6), 1650-1666.e15. https://doi.org/10.1053/j.gastro.2020.01.046


  • Murakoshi, H., Horiuchi, H., Kosugi, T., Onda, M., Sato, A., Koga, N., & Nabekura, J. (2019). ShadowR: a novel chromoprotein with reduced non-specific binding and improved expression in living cells. Scientific Reports9(1). https://doi.org/10.1038/s41598-019-48604-4
  • Saneyoshi, T., Matsuno, H., Suzuki, A., Murakoshi, H., Hedrick, N. G., Agnello, E., O’Connell, R., Stratton, M. M., Yasuda, R., & Hayashi, Y. (2019). Reciprocal Activation within a Kinase-Effector Complex Underlying Persistence of Structural LTP. Neuron102(6), 1199-1210.e6. https://doi.org/10.1016/j.neuron.2019.04.012

A03 SAHARA Naruhiko

  • Takado, Y., Sato, N., Kanbe, Y., Tomiyasu, M., Xin, L., Near, J., Yoshikawa, K., Sahara, N., Higashi, T., Suhara, T., Higuchi, M., & Obata, T. (2019). Association between brain and plasma glutamine levels in healthy young subjects investigated by MRS and LC/MS. Nutrients11(7). https://doi.org/10.3390/nu11071649
  • Endo, H., Shimada, H., Sahara, N., Ono, M., Koga, S., Kitamura, S., Niwa, F., Hirano, S., Kimura, Y., Ichise, M., Shinotoh, H., Zhang, M. R., Kuwabara, S., Dickson, D. W., Toda, T., Suhara, T., & Higuchi, M. (2019). In vivo binding of a tau imaging probe, [11C]PBB3, in patients with progressive supranuclear palsy. Movement Disorders34(5), 744–754. https://doi.org/10.1002/mds.27643
  • Nakamura, M., Shiozawa, S., Tsuboi, D., Amano, M., Watanabe, H., Maeda, S., Kimura, T., Yoshimatsu, S., Kisa, F., Karch, C. M., Miyasaka, T., Takashima, A., Sahara, N., Hisanaga, S,. Ikeuchi, T., Kaibuchi, K., & Okano, H. (2019). Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports13(4), 684–699. https://doi.org/10.1016/j.stemcr.2019.08.011
  • Sharma, G., Huo, A., Kimura, T., Shiozawa, S., Kobayashi, R., Sahara, N., Ishibashi, M., Ishigaki, S., Saito, T., Ando, K., Murayama, S., Hasegawa, M., Sobue, G., Okano, H., & Hisanaga, S. (2019). Tau isoform expression and phosphorylation in marmoset brains. Journal of Biological Chemistry294(30), 11433–11444. https://doi.org/10.1074/jbc.RA119.008415
  • Takeuchi, H., Imamura, K., Ji, B., Tsukita, K., Enami, T., Takao, K., Miyakawa, T., Hasegawa, M., Sahara, N., Iwata, N., Inoue, M., Hara, H., Tabira, T., Ono, M., Trojanowski, J. Q., Lee, V. M. Y., Takahashi, R., Suhara, T., Higuchi, M., & Inoue, H. (2020). Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. Npj Vaccines5(1). https://doi.org/10.1038/s41541-020-0172-y
  • Shimojo, M., Takuwa, H., Takado, Y., Tokunaga, M., Tsukamoto, S., Minatohara, K., Ono, M., Seki, C., Maeda, J., Urushihata, T., Minamihisamatsu, T., Aoki, I., Kawamura, K., Zhang, M. R., Suhara, T., Sahara, N., & Higuchi, M. (2020). Selective disruption of inhibitory synapses leading to neuronal hyperexcitability at an early stage of tau pathogenesis in a mouse model. Journal of Neuroscience40(17), 3491–3501. https://doi.org/10.1523/JNEUROSCI.2880-19.2020
  • Takahata, K., Kimura, Y., Sahara, N., Koga, S., Shimada, H., Ichise, M., Saito, F., Moriguchi, S., Kitamura, S., Kubota, M., Umeda S, Niwa F, Mizushima J, Morimoto Y, Funayama M, Tabuchi H, Bieniek KF, Kawamura K, Zhang MR, Dickson DW, Mimura M, Kato M, Suhara T, Higuchi M. (2019). PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain 142, 3265–3279. https://doi.org/10.1093/brain/awz238

 Member SAWAI Satoshi

  • Senoo, H., Kamimura, Y., Kimura, R., Nakajima, A., Sawai, S., Sesaki, H., & Iijima, M. (2019). Phosphorylated Rho–GDP directly activates mTORC2 kinase towards AKT through dimerization with Ras–GTP to regulate cell migration. Nature Cell Biology21(7), 867–878. https://doi.org/10.1038/s41556-019-0348-8